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Abstract--One of the primary difficulties in the mathematical modelling of two-phase flows is the 
complexity of the interfacial transfer phenomena. The present study is concerned with the so-called virtual 
mass force during the acceleration of a two-phase mixture. It is shown that this interfacial force must be 
objective, and thus invariant under a change of reference frame. The most general form of an objective 
virtual mass acceleration is derived and appropriate experiments are suggested for verification and 
parameter determination. 

1. INTRODUCTION 

One of the outstanding problems in two-phase flow is concerned with phase separation 

mechanisms. This paper focuses on understanding the effect of virtual mass on phase separa- 

tion during the acceleration of a two-phase mixture. 
A bubble imbedded in a flowing fluid is influenced by a number of mechanisms (drag force, 

virtual mass force, Bassett force, etc.), which act on it through the traction at the vapor-liquid 

interface. The traction at the interface depends on the geometry of the interface, and the details 
of the flow field inside and outside of the bubble. It is not practical to solve the exact fluid 
equation (plus jump conditions) for two-phase flows of practical significance. Hence to describe 
multidimensional two-phase flows, one must resort to averaged equations, such as the time 
averaged equations of Ishii (1975). The basic premise is that not all of the details of the exact 

flow equations contribute to the averaged traction at the interface. The philosophy adopted for 
the determination of phenomenological constitutive equations is that the interfacial force term 
can be related to some appropriate set of flow variables. For example, the interfacial force term 
is usually related to the average relative velocity through an interfacial drag law. This can be 
done by assuming that the interfacial drag force is proportional to the (vectorial) relative 

velocity, and using experimental data to infer the dependence of the proportionality factor on 
the void fraction and the magnitude of the relative velocity. We have assumed that the virtual 
mass force should be treated in a similar way. That is, we have assumed that the virtual mass 
force is proportional to an appropriate acceleration. As before, the proportionality factor must 
be determined experimentally. Introducing the virtual mass force in this manner should yield a 
working system of conservation equations which are able to model accelerating two-phase 

flows better than a comparable system of equations without a virtual mass force term. 
The basic concept of a virtual mass force can be easily understood by considering the 

change in kinetic energy of fluid surrounding an accelerating sphere. The classical result, 
contained in the works of Milne-Thomson (1968), is that the acceleration of the sphere induces 
a resisting force on the sphere equal to one-half the mass of the displaced fluid times the 
acceleration of the sphere. That is, if u(t) is the velocity of the center-of-mass of the sphere, PL 

is the density of the liquid, and R is the radius of the sphere, then the virtual (or added) mass 
force on the sphere is defined as: 
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In arriving at this expression for the virtual mass force, the effects of any viscous forces and 
neighboring spheres were not considered. In general, the virtual mass force for a real flow, 
involving many interacting bubbles, must include other flow parameters such as void fraction. 

There are other forces, e.g. the Bassett force, the Fax6n forces, the lift force, the Magnus 
force, and forces due to deformation/expansion/contraction of the bubbles. Here we shall be 
concerned only with the virtual mass force. 

2. THE M O M E N T U M  E Q U A T I O N S  OF S E P A R A T E D  FLOW 

Consider the phasic axial momentum equations of transient two-phase flow (Ishii 1975), 

DkUk _ _Otk V pk + V"  [ ak( l"k + 'rkT)] + akPkgk + (Pkl -- pk)V ak + (nki - Uk)F k + Mk  OlkPk O t  - [2] 

where the subscript k denotes the liquid (k = L) and vapor (k = G) phases; and where ak is the 
volume fraction of phase k, p is the pressure, r is the laminar stress, ~r is the turbulent stress, 
g is the body force and Dk/Dt is the material derivative following phase k. 

For adiabatic air/water flow, the volumetric mass generation term for phase-k Fk is zero. 
Furthermore, if the phasic pressure Pk and the interfacial pressure Pki are assumed identical: 

Dkuk = _ akVpk + V" [ak(fd, + ~'J)] + a~kgk + M~. [3] t~kPk Dt 

The volumetric interfacial force Mk on phase-k is the force on one phase due to the other 
phase. For adiabatic air/water flow, Mk contains the interfacial drag force (Fo) and the virtual 
mass force (FvM). For the purposes of this discussion only the virtual mass force per unit bubble 
(vapor phase) volume will be considered: 

FVM = CvMpLavM [4] 

where avM is the virtual mass acceleration term in question, and CVMpL is the virtual mass per 
unit bubble volume. As discussed previously, for a single, non-deformable, spherical particle, 

CvM = 1/2. [5] 

For two-phase flows of practical concern, the appropriate void dependent expression for CvM is 
likely to give a value less than one-half, but its functional form is currently not well known. (A 
more general theory would allow CvM to be a second order tensor. If the two-phase flow is 
locally isotropic, the more general theory reduces to/4]). 

Constitutively the virtual mass force can be treated as a product of the virtual mass and 
virtual mass acceleration. Constitutive equations, such as that for interfacial drag and inter- 
facial stress tensors, are invariant under changes of frame of reference, i.e. they are objective. 
The starting hypothesis in formulating a constitutive relationship for the virtual mass force is 
that the virtual mass acceleration term (arM) should be objective, that is, it should be frame 
indifferent. 

3. OBJECTIVITY 

"A frame of reference may be described as a possible way of relating physical reality to a 
three-dimensional Euclidean point space and a real time axis" (TruesdeU & Noll 1965). A 
change of frame is a one-to-one mapping of space-time onto itself in such a manner that 
distances, time intervals, and temporal order remain unchanged. 
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To better understand the meaning of objectivity, consider its mathematical definition. Let x 
and t denote the position and time in the old frame, x* and t* the corresponding position and 
time in the new frame. The most general change of frame is of the form, 

x*(t) = Y(t) + Q(t)- (x(t) - zo) [6] 

t* = t + t' [7] 

where the quantity t' is a real number. 
Without loss of generality, let frame-I move relative to frame-II in a rigid body motion. As 

shown schematically in figure 1, a point P is observed in frame-I at position x, is observed in 
frame-II at position x*. 

The fixed point Zo is mapped into Y(t). If zo is set to zero, then Y(t) represents the position 
vector of the origin of frame-I with respect to the new frame-II. In other words, Y(t) represents 
a translation. The time dependent orthogonalt second-order tensor Q(t) represents a rigid body 
rotation and possibly a reflection; det [Q] = 1 implies a rotation, while det [Q] = -  1 signifies a 
reflection. 

A scalar is objective if, 

a* = a. [8] 

A vector u is objective if, 

u* = Q . u .  [9] 

A second order tensor T is objective if, 

T* = Q" T" QT. [10] 

Not all vectors and tensors are objective. Indeed, only very special ones are. As an example, 
related to two-phase flow, consider a position vector x in the new frame, 

x*(t) = Y(t) + Q" (x(t)- Zo). [I I] 

The material derivative of [I I], 

/~'x* = Y+Q" ( - ~ )  +(~" (x-z°) Dt - . [12] 

UnslurrKI frormm Starred frame 

Figure 1. Change of reference frame. 

tBy orthogonal we mean 9 "  9 r = .I. 
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where 

Dk 0 
= ~ +  Uk" V. [13] 

By definition, the velocity of phase-k is given by, 

DkX [14] 
u t =  Dr" 

Thus, [12] and [14] yield, 

uk = Q'Uk + Q "  ( x -  zo) + ~/. [15] 

Comparing [9] and [15], it is obvious that phasic velocities are not objective. If, however the 
liquid phase velocity (k = L) is subtracted from the vapor phase velocity (k = G): 

UG-- UL = Q" (u6 - uL). [16] 

Hence, the relative velocity is objective. 
The variables used in [3] are all time averaged variables. That is, 

f ( to)=l  fti°+rf dt [17] 

where [ is the instantaneous value of the variable and [ is the time averaged value. The time 
average of [ depends on the time interval over which the integration occurs. Thus, the time 
averaging process, [17], is objective. 

One of the cornerstones of classical mechanics is that the surface traction (n. ~.) is objective 
(Truesdell & Toupin 1960). For a two-phase system, this implies that the time averaged 
interracial traction, (n. g)li, is objective. Since Ishii (1975) has shown, 

n. *.li = pVa + Mk [18] 

Mk must be objective if pVa is objective. It is relatively straightforward to show (Cheng 1977) 
that, 

p*V*ot* = Q. (pVa). [19] 

Thus, pVa is objective and hence the volumetric interracial force, Mk, must be objective. That 
is, quantities which express how the two-phase mixture reacts to a given (geometric, thermal 
and mechanical) state must be coordinate frame invariant. Specifically, laws which express the 
volumetric interracial force, Mr, as a function of mean field variables, must be the same in any 
reference frame. Thus, the only admissable interracial forces must transform as, 

M* = Q .  Mk. [20] 

4. OBJECTIVE VIRTUAL MASS ACCELERATIONS 

For the case of adiabatic air/water flow, the interfacial force per unit mixture volume, Mk, is 
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comprised of the interracial drag force per unit bubble volume (Fo,), and the virtual mass force per 
unit bubble volume (FvM). Thus, 

Mr = M~ = a[F~ + FVM]. [21] 

Since the drag force involves only relative velocities, it is obviously objective; thus determine 
the objective virtual mass accelerations, arM. 

The phasic acceleration terms: 

* = 9"  ~ + + {). (x - Zo) + Y. [22] 

Subtracting this equation for the liquid phase (k = L), from the equation for the vapor phase 
(k = G): 

--9. + . 

To find an expression for 0 consider the velocity of phase-k in indical notation. Taking the 
material derivative of [6]: 

where 

and 

[24] 

• okx? 
u, i= Dt [25] 

Dkxj 
u t j -  Dr" [26] 

The velocity gradient of phase-k in the starred frame of reference is, 

aukj = aukiax,. 
ax*l OXmaX'( [27] 

From the definition of the rotation tensor Q: 

OXrn 
- -  3 Q l n l .  
ox't 

Substituting [28] into [27]: 

aUq = r~ aUkj 
ax'~ ,cir. ax.." 

The gradient, alax~t of [24] is, 

au** .- ~ _ au~j 

a ~  ' = Q'J axf  + q '  a x f  

[28] 

[29] 

[30] 
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Using the result from [28]: 

D. D R E W  et al. 

axj = Qtj. 

ax*~ 

Rearranging [30] with results from [29] and [31]: 

* - -  + O, jO,. aukj 
dx~ OXm 

When [32] is written in invariant notation: 

V*u~ = Q .  0 r + Q .  (VUk) • QT. 
~ . 

Dotting [33] with QT yields, 
~ 

QT. (V'u*) = 0 r + (Vuk) • QT 

[31] 

[32] 

[33] 

[34] 

o r ,  

Qr = QT. (V'u*) - (VUk) " Qr. 
~ 

By transposing [35] we arrive at the final form for Q, 

Q = (V'u*)  r .  Q -  Q" (VUk) T" 

Writing [36] for the vapor phase (k = G) and the liquid phase (k = L) separately, 

and, 

If we write 20 as 

0 = (V'u*) r"  Q -  Q" (Vua) r 

Q = (V,u*) r .  Q -  Q. (VUL)~ 

2Q = (2-  A)Q+ AQ, 

where A is a parameter and combine [37]-[39]: 

, * T Q = (2-A)[(V*u*) r .  Q - Q .  (Vee) T] + A[(V eL) " Q - Q "  (VUL)T]. 

[351 

[36] 

[37] 

[38] 

[39] 

[ 4 0 ]  

Substituting [40] into [23], after some simplification: 

DGu~ D * * * LUL * * " *  * " * *" V * U * + ( l  * * • - X ) [ ( u o  - u D "  V * ( U L  - -  U D ]  ( u ~ -  UL)" V Uo-- ~Uc-- UL) 
Dt Dt 

= Q. {D~__G DLUL - Dt (uG - UL)" VU~ - (uo - UL)" VUL + (1 -- A)[(Uo - UL)" V(U -- Ua)]}. 

[ 4 1 ]  
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Observe that the relative acceleration given in [41] is objective. After rearranging the ac- 
celeration term in [41] we get the most general objective acceleration (arM) for two phase flow, 

[42] 

Equation [42] can be written in several equivalent forms, e.g. 

DLUG DGUL ÷ (1 -- A)(Ua -- BL)" V(BL -- UG) [43] arM= ~ 

o r ,  

O~(u~ - UL) 
avM = Dt ~ (uG - uL)" [(A - 2)VUG + (I - A)VUL]. [44] 

The first term in [44] Do(uG- BL)/Dt, has been used as the virtual mass acceleration term by 
previous investigators, Wallis (1969), Hinze (1961) and Soo (1967). Equation [44] clearly shows 
that this term, alone, is not objective and is thus not a possible choice for avu. 

5. EVALUATION OFTHE PARAMETERS Cw AND A 

Consider the parameters CvM and A. We anticipate that CvM = Crib(a) and A = A(a). From 
[4] and [44], 

FvM = pLCvM {a(U~t UL) ~_ UO" V(Ua -- UL) + (U6 -- UL)" [(A -- 2)Vua + (1 - A)VUL]}. [45] 

Note in [45] that the appropriate values for CvM can be determined from experiments involving 
only the temporal acceleration term, which is given by, 

pLCvM a(U~ -- UL) 
at [46] 

Hence, to determine Cv~, we can perform an experiment in which, 

uc = uo(t)i [47a] 

UL = UL(t)i [47b] 

where i is a unit vector in the axial direction. Houghton (1976) has performed such experiments 
with single dispersed particles of various shapes. He found, as expected, that for a sphere, 
CvM = ~, and that for other shapes, the value of CvM is shape dependent. These experimental 
values are considered to be valid for dilute two-phase mixtures. For higher void fraction cases 
of more practical concern, the interaction between the dispersed particles, which likely lowers 
the value of CvM, is not well known. Obviously, more experimental data are needed. Consider 
some experiments which might be performed to determine the correct value of the parameter A. 
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Consider the case of the acceleration of a rigid single spherical bubble (released from rest) 
through a still tank. For this case, the time averaged variables UL and nG are, 

uc = uG(x, t)i 

uL = 0. [48] 

Thus, [45] reduces to, 

FvM = ~ OL + (A -- 2)Uc" Vua • [49] 

This particular problem (a bubble rising in a still tank) is a classical one, and has a well known 

formulation, 

1 D~uG [50] 
F v ~  = 2 pL D t  " 

Comparing [49] and [50], we find that for this case, which is typical of very low void fraction, 
A=2. 

Consider very high void fraction, and the virtual mass force (FvM) on dispersed liquid 
droplets. For a single liquid droplet, accelerating in a constant velocity (vapor) flow field, the 
time averaged velocities are, 

ua = constant 

UL = UL(X, t)i. [51] 

Thus, using [42] and [4], the virtual mass force on an accelerating spherical droplet can be 
written as, 

f DLuL + 'U FVM = pLCvu/-'-~ t ~ - uL) "VuL - (I - X)(uo - UL)" VUL}. [52] 

This problem is also a classical one, which, for a spherical droplet, has a well known 

formulation, 

I DLnL [53] 
FvM=-20~ Dr" 

By comparing [52] and [53], we find that A = 0, and CvM = ~ pdpL. 
In summary, we have shown through comparisons with the asymptotic cases of single 

bubble, and single droplet, acceleration that the parameter A should be a function of (at least) 
void fraction. Moreover, it appears that the limiting values of X in the low void and high void 

regimes are, 

The value of A(a) at 

lim,-.o A(a) = 2 

lim,..l A(a) = 0. 

intermediate void fractions is not 

[54a] 

[54b] 

clear, and must be determined 

experimentally. With this in mind, let us consider some appropriate experiments which could be 
used to verify the validity of [44], and to determine the appropriate functional form of A(a). 
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6. POSSIBLE EXPERIMENTS 

From [44], and the previous discussion, it should be clear that an appropriate experiment 

must be one in which, 

uG - uL¢ 0 [55a] 

[uG - ud" VuG g 0 [55b] 

[u~ - uL]" VuL/0. [55c] 

It is also interesting to note that it is the spatial acceleration terms which are of interest, since 
the temporal acceleration term in [44] is the same as that used by previous investigators, Wallis 
(1%9), Hinze (1961) and Soo (1%7). 

An experiment which appears to be attractive is one in which there is a spatial acceleration, 
or deceleration, of a two-phase flow. That is, a nozzle/diffuser experiment, such as Wallis 
(1977). It clearly satisfies the criteria given in [55], unfortunately, due to the relatively small 
spatial accelerations which can be measured with optical techniques, it can be readily shown 
(Cheng et al. 1978) that such experiments do not yield much insight into the form of CvM(a) and 
A(a). Indeed, it appears that virtual mass effects are significant only for conditions were spatial 
effects are important, such as critical two-phase flows. 

Thus the most promising experiments for the verification of [44], and the determination of 
CvM(a) and A(a), appear to be air/water critical flows or ones in which the sonic wave 
dispersion characteristics are measured. It is hoped that future experiments of this type will be 
performed. 

7. APPLICATION 

While, for many cases of interest, the inclusion, or neglect, of the virtual mass force in the 
phasic momentum equations does not appreciably change the numerical results, the com- 
putation efficiency of the solution scheme can be dramatically effected. This effect is due to the 
fact that the virtual mass force changes the eigenvalues of the system of partial differential 
equations being solved (Cheng et al. 1978). 

For example, the system of six partial differential equations, one-dimensional phasic 
continuity, momentum ~nd energy equations, can be written in matrix form as: 

A aU+ au+ ~- B~ Cu=d. [56] 

Where u is the vector of the dependent variables and A, B and C are square matrices. We see 
from [4], [21] and [44], that the temporal and spatial derivative terms in the virtual mass force 
will appear in the A and B matrices. If we do not include the virtual mass force then these 
terms are absent. The classification of the system (i.e. elliptic, parabolic or hyperbolic) is 
determined from (Garabelian 1%4), 

det [A# - B] = 0 [57] 

where the eigenvalues, #i = dz.Jdt, determine the characteristics of the system. Thus, inclusion 
of the virtual mass force term changes the eigenvalues, and can change the classification of the 
system. In general, inclusion of the virtual mass force dramatically improves the computation 
efficiency. See Lahey et al. (1978) for a discussion of this effect. Moreover, for conditions in 
which one has very high spatial accelerations, such as critical two-phase flow, the virtual mass 
force is of prime fmportance, and can not be neglected. 
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NOMENCLATURE 

virtual mass acceleration 
virtual volume 
material derivative following phase k 
interracial drag force 
virtual mass force 
body force on phase k 
subscript denoting gas (vapor) phase 
G o rL  
subscript denoting liquid phase 
inteffacial force density 
pressure of phase k 
interfacial pressure of phase k 
orthonormal (rotation) matrix 
bubble radius 
time 
velocity of phase k 
interracial velocity of phase k 
spatial coordinates 

symbols 
volume fraction of phase k 
interracial mass generation rate to phase k 
parameter in virtual mass acceleration 
density of phase k 
laminar (viscous) stress of phase k 
turbulent stress of phase k 
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